Back to search results

Quantum Mechanics

This course is intended for students who have had exposure to physics but yearn to discover more about the modern aspects of physics. Richard Feynman said, "I think I can safely say that nobody today understands quantum physics." While many would agree with this statement in principle, there is no doubt that quantum mechanics is one of the most precise scientific theories ever developed. Its impact is felt every day. It is estimated that 30 percent of the U.S. gross national product stems from inventions based on quantum physics. It is becoming clear that quantum physics is no longer an esoteric topic to be learned in graduate school, but a necessity for many areas of research like chemistry, communication technologies, engineering, and even biological studies. This course is intended to prepare students for future technologies and fields leveraging quantum theory.

Targeting the mathematical foundations of quantum mechanics, a central goal is to introduce the fields of quantum information and quantum computing. Along the way, experimental results bearing on the meaning of quantum mechanics will be reviewed with demonstrations of interferometers, wave plates, and other elements utilized in quantum optics experiments. The bulk of the course will be in terms of discrete observables, requiring elements of linear algebra. This will allow an introduction into the exciting area of quantum computing. A brief introduction to continuous observables, including solving the Schrodinger equation for simple scenarios, will prepare students for later exposure to quantum mechanics.

Back to search results
Session One
-
Course is Full
Grade(s)
10-11
at the time of application
Age(s)
15-17
on the first day of session
Scheduled Class Time*
08:00 AM - 11:00 AM (PDT)

*The course will meet for two hours daily (Monday–Friday) for a live class during this window of time. The exact time will be set closer to the program start. In addition to the live meeting times, students will engage in out-of-class learning assignments such as assigned readings, group work, pre-recorded online lectures, and more.

Prerequisite(s)

A first course in calculus, familiarity with basics of linear algebra: row/column vectors, matrix multiplication. Completion of an introductory or AP-level physics course: mechanics, electricity, magnetism.